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Abstract

In low- and middle-income country cities, poor households often reside in unattractive

locations, including flood-prone areas. This can be due to poor information about flood

risks or acceptance of these risks in the face of lower housing prices. Poor households are

also more vulnerable to floods than richer households given the low-quality housing they

occupy. Does information on flood risks help households make better location and housing

choices? To what extent will these choices be revised with increased flood risks from climate

change? To answer these questions, we develop a polycentric urban economics model with

heterogenous income groups, formal and informal housing, and flood risks. The model is

calibrated to Cape Town (South Africa) and simulations are run to assess the impact of

flood risks on land values and income segregation within the city, distinguishing between

the effects of three types of floods (fluvial, pluvial, and coastal). Although total damages

from floods are greater for rich households, they represent a larger relative share of poor

households’ incomes. Better information encourage the adaptation of poor households up

to a certain point, and this allows them to mitigate most of the adverse consequences from

climate change. Considering the different nature of flood types is key to understand their

responses.
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1 Introduction

In low- and middle-income countries, urban growth can be accompanied by greater vulnerability

of poor households who tend to settle in flood-prone areas. In this paper, we propose the first

urban simulation model that simultaneously accounts for all three types of flood risks (fluvial,

pluvial, and coastal). Accounting for the whole range of flood risks makes it possible to assess

how they differentially impact cities, so as to design better targeted policy responses.

As our model ambitions to offer a realistic representation of a low- and middle-income country

city, it is important to account for key features such as income heterogeneity and the coexistence

of formal and informal housing (including settlements erected in the backyard of public housing

units). Building on a simplified version of previous work that was made on the city of Cape Town

(Pfeiffer et al., 2025), we directly apply a discrete two-dimensional version of the standard urban

monocentric model (Fujita, 1989) on a grid of pixels, and simulate developers’ construction

decisions along with households’ housing and location choices at a distance from multiple

employment subcenters. At the same time, we account for land-use and building regulations,

natural constraints, and exogenous amenities. This approach has been shown to have a strong

predictive power in terms of urban patterns across the world (Liotta et al., 2022).

We add flood risks to this modeling infrastructure by considering the probability of flood

occurrence in each grid cell, and the corresponding damages caused to housing structures and

contents. We consider that these are the most direct channels through which flood risks affect

city patterns over the long term (Merz et al., 2010; Pharoah, 2014; Mosimann et al., 2018).

Agents internalize these risks (or not) by considering the expected annual damage value (based

on probabilistic flood maps) as an added term in the depreciation of their housing capital and

quantity of goods consumed (Huizinga et al., 2017). This extends the framework in Avner et al.

(2022) by incorporating the impact of flood damages in both housing supply and demand.

We further distinguish between fluvial, pluvial, and coastal floods. Typically, fluvial floods

are water overflows from rivers, whereas pluvial floods designate surface water floods or flash

floods, caused by extreme rainfall independently of an overflowing water body. Coastal floods

encompass storm surges, periodic tides, and gradual sea-level rise. In our model, flood risks do

not only affect population and structures through their direct exposure to floods, but the city

as a whole through equilibrium effects (i.e., with endogenous housing prices and sorting of the

population across the city): the double vulnerability of poor households living in low-quality

housing in flood-prone areas is especially important in this regard.

As a proof of concept, we present two comparative statics: one comparing scenarios with and

without flood risk anticipation, then another one comparing scenarios with and without climate

change. Although total damages from floods are greater for rich households (with a higher

propensity to live on the coast), they represent a larger relative share of poor households’ incomes

(who therefore tend to react more strongly to flood risks). Better information encourages their
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relocation outside flood-prone zones and lowers their willingness to pay for exposed housing.

However, affordable and protected areas may also be located far from job centers: this underlines

the fundamental trade-off poor households face between social vulnerability and economic

opportunities, and explains why they cannot entirely move away from flood risks. Most of the

effect comes from households avoiding localized fluvial flood zones with acute destruction risks.

On the contrary, pluvial flood zones are typically more widespread, with lower destruction risks.

This explains why, in the face of climate change, households are able/willing to mitigate most

of the adverse consequences in fluvial, but not in pluvial flood zones.

We insert ourselves in a long thread of land use and transport integrated models (LUTI) applied

to the evaluation of urban climate policies in various economic contexts. For instance, Viguié &

Hallegatte (2012) look at trade-offs and synergies between a greenbelt policy, a flood zoning

policy, and a transportation subsidy within the context of Paris (France). In the context

of Buenos Aires (Argentina), Avner et al. (2017) also look at complementarities between a

public transport subsidy, an income compensation scheme, and a construction subsidy scheme.

At the global scale, Liotta et al. (2023b) compare the impacts of four representative urban

climate policies: a bus rapid transit program, a fuel tax, a fuel efficiency improvement, and

an urban growth boundary (UGB). More related to our work, Liotta et al. (2024) study the

impact of a fuel tax on spatial inequalities in the context of Cape Town (South Africa). They

find that the poorest households, living in informal settlements or subsidized housing, have

few or no ways to adapt to changes in fuel prices by changing housing type, adjusting their

location or housing consumption, or shifting transportation modes. Complementary policies

promoting a functioning labor market that allows people to change jobs easily, affordable public

transportation, or subsidies helping poor households to rent houses closer to employment centers

are also shown to improve the social acceptability of climate policies. In the current paper,

we rather focus on the adaptation side of climate policies, and study the impact of flood risk

information policies with climate change on spatial inequalities.

Our approach also relates to the so-called “quantitative urban models” (Redding & Rossi-

Hansberg, 2017), which have been increasingly applied to emerging country contexts (Sturm

et al., 2023). Apart from the fact that we allow for an endogenous city fringe (which matters in

the presence of a strong population growth), the main difference with these studies is that we

consider job locations and (estimated) wages as exogenous. We do not see this simplification as

a strong limitation given that floods generally do not lead to massive displacements of economic

activity (Kocornik-Mina et al., 2020). Besides, it allows for a more tractable model, with

typically more dimensions of heterogeneity and a more granular geography. To the best of our

knowledge, we are also the first to propose a realistic urban simulation model that integrates all

types of flood risks within an internal city structure. Some quantitative urban models address

coastal risks (Lin et al., 2024; Balboni, 2025). These models focus on the productive aspects of

the economy and primarily consider sea-level rise (linked to climate change), without accounting

for other components of coastal risks such as tides and storm surges. The literature on these
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effects (focusing on the formal housing market) is mostly in reduced form (Ortega & Tas.pınar,

2018; Muller & Hopkins, 2019; Ellen & Meltzer, 2024). A notable exception is Varela (2023),

which uses a residential segregation model to explain the heterogeneous price recoveries following

a hurricane. The economic literature on fluvial and pluvial risks appears to be less extensive,

likely due to the periodic (and thus predictable) nature of these phenomena, which complicates

causal analysis.

Section 2 presents stylized facts regarding flood risks in Cape Town. Section 3 presents the data.

Section 4 presents the model and Section 5 how it is estimated. Section 6 presents the model

results for two sets of comparative statics: the first one introduces information on flood risks,

and the second one the effects of climate change. Section 7 concludes.

2 Context

Cape Town, a sprawling city of four million inhabitants is located on a broad, sandy plain

connecting the mountainous Cape peninsula to the mainland. It is among the cities most

affected by fluvial and pluvial flood risks in Sub-Saharan Africa, with 160,000 households

directly exposed and average annual damages estimated at almost $16 million (World Bank,

2022). Damages from coastal floods (storm surges and periodic tides) are less important in

absolute terms (around $370,000 annually), but could sharply increase and affect more people

with climate change and sea-level rise (Hallegatte et al., 2013). For reference, we show a map of

Cape Town’s major flood plains in Figure 1 below.

Figure 1: Cape Town’s major flood plains

A large fraction of the population resides in the Cape Flats, a predominantly low-lying area
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of about 25x25km where approximately 200,000 poor households (15-20% of the population)

live in informal settlements. The hydrology of the Cape Flats renders poor households living in

informal settlements vulnerable to both fluvial and pluvial flooding. Fluvial flooding is episodic,

typically more intense, and localized along Cape Town’s four perennial rivers and stormwater

channels. Pluvial flooding, on the other hand, is persistent and widespread across the Cape

Flats area: the vast network of seasonal rivers, streams, and wetlands transecting the area is

inundated for a few weeks annually during the rainy winter season. From there, drainage is

encumbered by flat terrain and a water table lying between 1-3m from the surface in the dry

summer months, but rises by between 1-2m during winter, causing “rising water” or “seepage”

in topographic depressions. The impact of hydrology on households is aggravated by inadequate

drainage infrastructure, which leads to localized ponding. Figure 2 below shows a more detailed

map of the Cape Flats and their exposure to floods in flood-prone depressions (green areas) and

flood-prone riverines (blue areas). It also shows the location of informal settlements (dark grey

and black areas) in proximity of these zones.

Figure 2: Flood-prone zones in the Cape Flats

The magnitude of the flood impacts on poor households is determined both by nature and by

human behavior. The main human cause of impact is the massive, informal occupation of large

areas of flood-prone wetlands and detention ponds by poor households who build vulnerable

structures from corrugated iron sheets. The propensity for households to locate in flood-prone

areas is not incidental, but attributable to the fact that formal development is prohibited in

flood-prone areas, leaving vacant remnants of land throughout the Cape Flats area. Furthermore,

South African courts have pronounced that local authorities are not allowed to evict illegal

land occupants from erected structures unless alternative accommodation is provided. Land
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occupation events typically occur in the run-up to winter since local authorities are reluctant to

evict residents during winter on humanitarian grounds. In the remainder of this paper, we will

consider tolerance for informal settlement zones as an exogenous factor.

With population growth and these ongoing spatial dynamics, the extent of informal settlements

in flood-prone areas has increased from 17ha in 1995 to 147ha in 2020, and the corresponding

number of vulnerable households from roughly 2,500 to 15,000 (based on aerial imagery). In

what follows, we uncover the economic mechanisms behind such development, and assess how

flood damages are likely to evolve following adaptation to better information and climate change.

3 Data

This section starts by presenting the data we use to estimate our model, and how we process it.

Grid We use a grid of 500x500m resolution, that encompasses the whole urban area and

corresponds to the grid that the City of Cape Town uses for planning purposes. All other

datasets are either spatially aggregated or disaggregated to fit the grid.

Figure 3: Expected capital depreciation rate due to floods (housing contents)

Note: The map on the left shows the values at baseline. The map on the right shows the change (in absolute terms) when
considering climate change.

Flood data We use the FATHOM (Sampson et al., 2015) and the Deltares (2021) data,

two global spatial datasets of flood hazards. They provide flood water extent and depth for

respectively pluvial/fluvial and coastal hazard scenarios, expressed as “return periods”, which

indicate the likely frequency of occurrence (i.e., once every number of years) for each flood

event category. When overlapping, we consider the maximum flood depth across flood types as
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water would typically flow to other areas instead of piling up. The data are at a 3 arc-second

(approximately 90m) resolution.

For reference, the climate conditions used to produce the flood maps are the ones prevailing

in 2018, which we assume to be roughly in line with the ones prevailing at our baseline year

(2011). Because our geographic units are 30 times larger than the units used in the raw flood

maps, the flood data that we use is sufficiently granular to capture flood impacts at the grid

cell level. Note however that we use the “undefended” versions of the datasets, i.e. the ones

that do not account for infrastructure and other potential protection investments affecting flood

hazards. This is because the global data is not precise enough to properly account for their

spatial distribution at the local level. An exception we make is for the presence of drainage

systems, which we assume to be linked with formal concrete housing structures: such dwelling

units will not be affected by the least severe (but more frequent) flood events. We intend to

prioritize the simulation of other protective investments in future work, as they are of the utmost

policy relevance.

In every grid cell, the flood data is converted into an expected fraction of capital destroyed,

collapsing all return periods into one annualized value. To do so, we borrow “structural” damage

functions by housing type from Englhardt et al. (2019) that convert flood depth into building

destruction shares. We also consider damages in terms of “contents”, expressed as the fraction

of (semi-)durable goods that households consume and that are vulnerable to floods. To obtain

the expected fraction of contents destroyed, we use the flood depth-damage function proposed

by De Villiers et al. (2007).

Finally, we consider how climate change might affect flood hazards. For coastal flood risks,

we rely on specific flood maps provided by Deltares, that are based upon the IPCC’s RCP 8.5

scenario projected onto the year 2050. Since the FATHOM data does not come with similar

maps for pluvial/fluvial flood risks, we simply multiply all annual probabilities by 2 (i.e., we

divide return periods by 2) as a proof of concept: this increase is of the same order of magnitude

as the one observed for coastal flood risks. It should be noted that those scenarios are generally

thought of as being relatively pessimistic.

To illustrate our approach, we represent in Figure 3 the spatial distribution of the flood-content

depreciation rate (which does not vary across housing types), and how it changes with climate

change (in absolute terms). As expected, flood exposure follows the coastline (for coastal flood

risks), waterways (for fluvial flood risks), and topological depression areas (for pluvial flood

risks). Note that this is only an intermediate output, as final damages will also depend on

households’ housing and location choices, depending on economic opportunities and real estate

prices. The increase in risk also appears to be non-negligible, reaching more than 10 percentage

points in most exposed zones.

Socioeconomic data The rest of the data is the same as in Pfeiffer et al. (2025). We refer

the reader to this paper for more visualization of model inputs. The spatial distribution of
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the population is taken from the 2011 National Census and is used to close the model. We

consider four housing types, namely formal private housing (FP ), formal subsidized housing

(FS), informal settlements (IS), and informal backyards (IB). We also define four income

groups of interest by choosing income-group thresholds such that only the lowest income group

is eligible for subsidized housing programs, and so that the two highest income groups are not

observed to reside informally (but are distinguished to account for high income inequality).

We use the City of Cape Town’s transport model to retrieve transport times and distances

between pairs of transport zones for each transport mode and job locations, along with the

estimated number of households per employment center and income group. The monetary

transport costs are retrieved from additional external sources. We also use aggregate statistics

on residence-workplace distances in Cape Town, derived from Cape Town’s 2013 Transport

Survey, to complete the estimation of households’ expected income net of commuting costs (see

Section 5).

Land availability is defined for each housing type. Areas of subsidized housing are identified

from the cadastre of the City of Cape Town. The area available for backyard housing is

estimated as the yard size of these units: in the context of Cape Town, most of so-called

informal “backyarding” occurs in such precincts. Informal settlement areas are obtained from

the characterization of enumeration areas (census blocks) in the 2011 Census: in the context of

Cape Town, they correspond to peripheral, publicly-owned land originally reserved for future

roads, social facilities, or public housing. It therefore makes sense to consider them as being

exogenously given. Land available for formal private development corresponds to all land

that is not constrained for housing construction (including exogenous commercial floor space).

Additional height restrictions apply across the city.

The amenities that we consider include natural amenities (such as slope and proximity to the

ocean) as well as urban amenities (such as the proximity to the historical center): we extract

them from the City of Cape Town’s open data portal, and take them as being exogenous (i.e.,

we do not endogenize them as a model residual) to precisely identify potential policy levers in

future work. Pfeiffer et al. (2025) find that this does not lead to strong underfitting. Finally,

we use property prices extracted from the City of Cape Town’s geocoded dataset on property

transactions for 2011, as well as data on dwelling sizes made available to us by the City of Cape

Town. These will serve to estimate the parameters of the housing production technology used

by formal private developers.

4 Model

4.1 Environment

We base ourselves on a simplified static version of the model from Pfeiffer et al. (2025) that

we augment with flood risks. As in their framework, we consider that each grid cell in the city
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is indexed by a vector of coordinates x = (x1, x2) and has an exogenous quantity of available

land for residential development per housing type h = FP, FS, IS, IB, Lh(x). In addition,

each location is characterized by an exogenous amenity index A(x) (centered around one),

and an exogenous disamenity index Bh(x) (below one) associated with informal housing types

h = IS, IB. A minor change from Pfeiffer et al. (2025) is that the informal disamenity index

now varies across space to better fit the overall population distribution. Then, the model focuses

on heterogeneous households’ housing and location choices, conditional on expected employment

outcomes.

It is important to note that we concentrate on material damages of floods in the housing

market. We do not address other potentially relevant risks, such as those affecting infrastructure

(Hallegatte et al., 2019), health (Picarelli et al., 2017; Paterson et al., 2018), or public services

(Hammond et al., 2015; Allaire, 2018). These extensions are left for future work.

Housing demand Households choose their consumption of composite good z and housing

quantity q, along with their residential location x and housing type h, by maximizing Stone-Geary

preferences:

U(z, q, x, h) = zα(q − q0)
1−αA(x)Bh(x) (1)

where 0 < α < 1 is the composite good elasticity (or budget share), 1− α is the surplus housing

elasticity, and q0 > 0 is the basic need in housing.

In doing so, they face the following budget constraint, that also depends on their income group

i = 1, .., 4 (from poorest to richest):

ỹi(x) + 1{h=FS}µ(x)Y RIB(x)

=
(
1 + γρcontent(x)

)
z + qhRh(x) + 1{h̸=FP}

(
ρ+ ρstructh (x) + 1{h̸=FS}δ

)
vh (2)

In equation (2), the left-hand side stands for revenues, and the right-hand side for expenses.

On the left-hand side, ỹi(x) is the expected income net of commuting costs for a household

of income group i living in location x: since households choose their residential location ex

ante, they consider the likelihood that they find employment (or not) in the surrounding job

centers, along with the associated commuting costs and the (exogenous) income they would

obtain given their income group at each specific workplace. This can also be rationalized ex

post by considering that the equilibrium is a static representation of a life-cycle process in which

households lose and change jobs (albeit not residential locations) over time.

When living in formal subsidized housing (1{h=FS}), households have the additional possibility

to rent out an endogenous fraction µ(x) of their backyard of fixed size Y at the endogenous

market rent RIB(x).

On the right-hand side, households need to pay for composite good z (whose price is normalized

to one). γ is the fraction of (semi-)durable goods that is exposed to floods and that depreciates
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at rate ρcontent(x): this corresponds to the expected fraction of capital destroyed from Figure 3.

They also need to pay for housing quantity qh at the endogenous annual rent Rh(x). Although

the housing consumption is a choice variable for h = FP , it is fixed for h = FS, IS, IB. We

further assume that the rent is zero for h = FS. In practice, this means that it is always

profitable for the poorest households to accept public housing offers. Therefore, in equilibrium,

all formal subsidized housing will be provided until the rest of income group 1 is rationed out of

this housing submarket.

We assimilate formal private residents to tenants who rent their housing from owner-developers

who themselves buy the land from absentee landlords. This is without loss of generality when

assuming no arbitrage between owning and renting, since the total price of housing (or land)

can be recovered as the infinite sum of discounted future rents (and conversely). However, this

affects whether the costs of construction and maintenance enter the demand- or supply-side of

the model formulation, since we assume they are covered by owner-developers. Again, this is

without loss of generality in competitive markets, since the standard tax incidence equivalence

result holds. Because we assimilate informal dwellers to owner-developers (which is aligned with

anecdotal evidence from the field), and subsidized housing dwellers to owner-occupiers (buying

for free from public developers), only they will directly pay for the costs of maintenance (and

construction in the case of informal dwellers). Also note that, in the case of informal settlements,

absentee landlords can be assimilated to illegitimate squatter-coordinators on public land, who

extract a rent-like payment from informal dwellers (Marx et al., 2019).

Mathematically, they (1{h̸=FP}) all pay a fraction ρ+ ρstructh (x) of building accounting value vh

(remember that this is fixed for h ̸= FP ), and informal dwellers (h ̸= FS)) additionally pay

for a fraction δ of this amount. ρ is the standard capital depreciation rate, and ρstructh (x) is the

added expected fraction of capital destroyed due to floods. δ is the cost of capital (or interest

rate) for building materials. It can also be interpreted as a flow cost of construction (considering

that poor households may not have access to financial markets): since informal housing units

are evolving structures, households build them little by little in practice. As for public flood

protection investments, we do not model private flood protection investments or slum upgrading,

and as such we do not make the difference between a “complete” and an “incomplete” informal

housing unit: we intend to prioritize such extension in future work.

Housing supply We focus on the housing supply per unit of available land. Since informal

units cannot be built vertically, it is equal to one for h = IS and µ(x) for h = IB. Moreover,

since the supply of (standardized) public housing is exogenous, it makes no difference how such

units are built and we abstract from modeling the housing supply for h = FS. We are left with

the problem of formal private developers.

To simplify the optimization program compared to Pfeiffer et al. (2025), we assume that they

produce housing with a Cobb-Douglas, and not a CES, technology. Given the very flat gradient

of built density in Cape Town (implying an elasticity of substitution between land and capital
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that is close to one in a CES specification), we consider that this is a good enough approximation

(also see Epple et al. (2010) and Combes et al. (2021)):

sFP (k) = κk1−a (3)

where κ is a scale factor, k = K
LFP

is the endogenous amount of capital per unit of available

land, 0 < a < 1 is the land elasticity (or budget share), and 1− a is the capital elasticity.

Formal private developers therefore maximize a profit function (per unit of available land)

defined as:

Π(x, k) = RFP (x)sFP (k)−
(
ρ+ ρstructFP (x) + δ

)
k − δP (x) (4)

As mentioned before, developers buy land from absentee landlords. To do so, they contract an

infinite debt that they repay at interest rate δ every period: this is to avoid time dependence

in a static model, and is without loss of generality if we assume no arbitrage between owning

and renting of raw land. Note that the price of a raw unit of land, P (x), can be recovered as

a function of (endogenous) housing market rent RFP (x) from a zero-profit condition (P (x) =
κ

1
a a(1−a)

1−a
a

δ(ρ+δ)
1−a
a

RFP (x)
1
a ). Then, developers may rent out a quantity sFP (k) of housing they build

at rent RFP (x), but need to cover for the cost of capital k, again at rate δ. Additionally, since

they own the structures, they need to cover for both the standard capital depreciation rate ρ,

and the expected fraction of capital destroyed due to floods, ρstructFP (x).

4.2 Equilibrium dwelling size

Again, we focus on the formal private housing sector since dwelling size is fixed for h = FS, IS, IB.

Maximizing utility (1) under constraint (2) implicitly defines the optimal housing consumption

Q∗(x, i) as a function of the endogenous utility level u for each income group i:

u =

(
αỹi(x)

1 + γρcontentFP (x)

)α
Q∗(x, i)− q0

(Q∗(x, i)− αq0)α
A(x) (5)

By considering that developers do not rent housing units below a legal threshold qmin > q0, we

therefore define the equilibrium dwelling size for h = FP as: QFP (x, i, u) = max [qmin, Q
∗(x, i | u)]

4.3 Equilibrium market rent

Plugging back QFP (x, i, u) into the first-order optimality condition for formal private households

(not shown), we obtain the bid rent for a space unit of housing h = FP :

ψFP
i (x, u) =

(1− α)ỹi(x)

QFP (x, i, u)− αq0
(6)

By doing the same for households living in informal housing, with fixed dwelling size qI and
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building value vI , we obtain the following bid rents for h = IS, IB:

ψIS
i (x, u) =

1

qI

(
ỹi(x)−

(
ρ+ δ + ρstructIS (x)

)
vI −

(
1 + γρcontentIS

) [ u

(qI − q0)1−αA(x)BIS(x)

] 1
α

)
(7)

ψIB
i (x, u) =

1

qI

(
ỹi(x)−

(
ρ+ δ + ρstructIB (x)

)
vI −

(
1 + γρcontentIB

) [ u

(qI − q0)1−αA(x)BIB(x)

] 1
α

)
(8)

Assuming that households bid their true willingness to pay and that there are no strategic

interactions, housing is allocated to the highest bidding income group in each area where housing

of a given type h = FP, IS, IB is available. The upper envelope of bid rents therefore identifies

the equilibrium market rent Rh(x) across space. Finally, remember that the rent is exogenously

taken as zero for h = FS.

4.4 Equilibrium housing supply

In the formal private sector, profit maximization of developers with respect to capital (per unit

of land) in equation (4) defines the optimal quantity of invested capital. Plugging this value

back into equation (3) yields:

sFP (x) = κ
1
a

(
(1− a)RFP (x)

ρ+ ρstructFP (x) + δ

) 1−a
a

(9)

In the informal backyard sector, utility maximization of (the poorest) households living in formal

subsidized housing with respect to the fraction of backyard space that is rented out yields:

µ(x) = α
qFS − q0

Y
− (1− α)

ỹ1(x)− (ρ+ ρstructFS (x))hFS

Y RIB(x)
(10)

4.5 Equilibrium population distribution

Finally, we divide the equilibrium housing supply (per unit of available land) by the dwelling

size, and multiply it by the amount of available land to obtain the equilibrium number of

households in each grid cell for each housing type. Then, we identify them as belonging to the

highest bidding income group (for h = FP, IS, IB), and obtain:

Nh
i (x) =

sh(x)Lh(x)

Qh(x, i, u)
(11)

where the numerator is exogenous and i = 1 for h = FS.

This is a direct consequence of housing market clearing. Note that labour market clearing is

already embedded in the definition of ỹi(x) (see Section 5).
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4.6 Closing the model

Following Sections 4.2-4.5, we therefore define an equilibrium as a set
{
ui, Rh(x), sh(x), N

h
i (x)

}
for all i, h, and x where these functions are defined, and where the following constraints hold:

(i) uhi (x) = ui for all x ∈ X\FS (set of locations occupied by households other than public

housing beneficiaries) [Spatial equilibrium]: to ensure that there is no profitable deviation

in equilibrium, all members of a given income group should be indifferent between available

location-housing pairs (with the exception of public housing beneficiaries who all have a

different utility level resulting from the random allocation of housing units that are more

or less well located)

(ii) P (x) ≥ PA for x ∈ XFP (set of locations occupied by formal private housing dwellers) and

PA is the price of raw agricultural land [City-edge constraint ]: at the city fringe, absentee

landlords must be indifferent between selling their land to a developer or engaging in

agricultural activities, which endogenously defines city boundaries

(iii) Ni =
∑
h

∑
x

Nh
i (x) [Population clearing ]: the city hosts all individuals in equilibrium

The numerical algorithm we use to solve for the equilibrium directly follows from this definition.

Starting from arbitrary utility levels for each income group, with the exception of public housing

beneficiaries (condition (i)), we sequentially solve for the quantities in Sections 4.2-4.5 and

find the corresponding urban extent (condition (ii)). We then compute the error between the

predicted populations
∑
h

∑
x

Nh
i (x) and the target populations Ni (condition (iii)). We update

initial utility levels depending on the sign and size of the error terms: the larger the error, the

more we increase utility, and conversely (note that Qh(x, i, u) is increasing in u in equation

(11)). The process is iterated until the total absolute error falls below some predefined precision

threshold.

This class of models corresponds to so-called “closed-city” models. Compared to “open-city”

models where utilities are exogenous but total populations are endogenous, they do not allow the

study of endogenous migration phenomena. In future work, we intend to leverage the dynamic

structure of the model in Pfeiffer et al. (2025) to incorporate population growth scenarios from

the City of Cape Town instead, along with a progressive extension of informal settlements

(enabled by higher tolerance from the social planner) to host urban newcomers.

Finally, we do not formally prove that the equilibrium exists and is unique, but Pfeiffer et al.

(2019) do it with a simpler framework. However, the fact that the algorithm converges, and

that it does towards the same results for 250 simulations starting from a wide range of initial

values, strongly suggests that the equilibrium does exist and is indeed unique.
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5 Estimation

In this section, we cover the estimation procedure for the exogenous parameters and variables in

the model. We refer the reader to Pfeiffer et al. (2025) for more detailed analyses of the estimation

results (which slightly differ quantitatively, but not qualitatively) and general validation of the

approach, as our focus in this paper is on the impact of flood risks more specifically.

5.1 Expected income net of commuting costs

We consider C employment locations, indexed by c = 1, ..., C, offering wage wic to members of

income group i. The purpose of this subsection is to estimate wage wic, and deduct expected

income net of commuting costs ỹic. Note that this quantity is estimated at baseline and does

not change across counterfactuals. Our model should therefore be interpreted as a spatial

equilibrium model of the housing market - not inclusive of the labour market - in which we will

nest a workplace choice model (see below). We would like to assess how strong an assumption

that is by looking at the effects of real flood events in future work.

Workplace choice model Given exogenous employment rates χi, households consider real

income yic = χiwic when choosing job centers (and residential locations). Note that we consider

households as representative individual workers. To commute between their residential and

work locations, they further choose between M potential modes of transportation, denoted by

m. For each mode m, residential location x, job center c, and income group i, households of

type j face real commuting cost:

tmj(x, c, wic) = χi (τm(x, c) + δm(x, c)wic)︸ ︷︷ ︸
tm(x,c,wic)

+ϵmxcij

where τm(x, c) is the monetary transport cost and δm(x, c) is the opportunity cost fraction of

time spent commuting.

ϵmxcij follows a Gumbel minimum distribution of mean 0 and scale parameter 1
λ
. It captures

the fact that, all else equal, households may have idiosyncratic preferences that rationalize the

coexistence of different individual choices within a given income group in equilibrium.

Commuters pick the transport mode that minimizes their real commuting cost. Due to the

properties of the Gumbel minimum distribution, this yields:

min
m

(tmj(x, c, wic)) = −1

λ
log

(
M∑

m=1

exp
[
−λtm(x, c, wic)

])
+ ηxcij

where ηxcij also follows a Gumbel minimum distribution with same parameters.

Households therefore still have idiosyncratic preferences for residential-work location pairs once

modal choice is accounted for. Note that we will check ex post that the above quantity is well
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defined for the estimated value of λ.

For a given residential location x, households therefore choose a workplace c that maximizes

their real income net of commuting costs, solving the program: max
c

[
yic −min

m
(tmj(x, c, wic))

]
.

Since this corresponds to the latent variable formulation of a multinomial logit model, the

expected income net of commuting costs ỹi(x) ≡ E
[
yic −min

m
(tmj(x, c, wic))

]
that enters the

main housing choice model can be defined as:

ỹi(x) =
C∑
c=1

πc|ix

[
yic +

1

λ
log

(
M∑

m=1

exp
[
−λtm(x, c, wic)

])]

with:

πc|ix =

exp

[
λyic + log

(
M∑

m=1

exp
[
−λtm(x, c, wic)

])]
∑C

k=1 exp

[
λyik + log

(
M∑

m=1

exp
[
−λtm(x, c, wic)

])]
Commuting cost calibration Based on the 2011 National Census, we consider employment

rates χi=1,...,4 = [0.57, 0.97, 0.96, 0.97].

We also assume that the monetary transport cost takes functional form τm(x, c) = T (Fm+dxcVm),

where Fm and Vm are mode-specific fixed and variable cost components, and dxc is the distance

(in km) between points x and c (from Cape Town’s transport model). In the model, we consider

C = 185 main job centers. T is a constant equal to the number of trips per year, that we set to

470.

We consider five transportation modes that are prevalent in the context of Cape Town: train,

bus, minibus/taxi, car, and walking. Walking is free. For the three public transportation modes,

we estimate the fixed and variable cost components by regressing transport cost statistics on

residence-workplace distances taken from Roux & Yolandi (2013). Considering estimates for the

average price of a car, and that materials roughly account for half of this value, we apply capital

depreciation rate ρ to this cost component to obtain the yearly vehicle fixed cost, that we divide

by T . For the vehicle variable cost, we consider fuel prices and energy efficiency data from the

International Energy Agency to obtain a price per km at baseline year. Table 1 summarizes the

values we find for each mode:

Table 1: Summary table of monetary transport cost parameters

Mode Fm Vm
Train 4.48 0.164
Bus 4.32 0.785

Minibus/taxi 6.24 0.522
Car 10.00 1.157

As for the opportunity cost fraction of time spent commuting, δm(x, c), we assume that it is

equal to the fraction of working time spent commuting, or that the opportunity cost of not
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working is equal to one. Here, we consider the labour supply elasticity as perfectly inelastic

(8 hours a day), and rule out the possibility that workers may commute out of their leisure

time. The time spent commuting is directly given by Cape Town’s transport model, except for

walking, which we assume to have a 4km/h speed.

Estimation of λ and wic From the workplace choice model, we can derive the expected

number of residents of income group i choosing to work in c, denoted Wic, provided that we

know the number of residents of income group i with their residence in x, denoted Ni(x), in all

locations x. This yields:

Wic = χi

∑
x

πc|ixNi(x)

Note that summing this relation over job centers c yields a labour market clearing condition.

Since the values for Wic and Ni(x) are respectively given by Cape Town’s transport model and

the National Census, we first solve the above equation for wic, for discrete values of parameters

λ. This is done numerically by starting with average values wi from the census for wic in

the right-hand side, and updating them iteratively until the target population is reached on

the left-hand side. Then, we pick the {λ,wic} pair that best fits the aggregate distribution of

residence-workplace distances from Cape Town’s Transport Survey: we obtain λ = 13.96.

Going back to the workplace choice model, we can now compute the value of expected income

net of commuting costs ỹi(x).

5.2 Housing production function parameters

By plugging the value of formal private housing supply (per unit of available land) from equation

(11) in the left-hand side of equation (9), and considering that RFP (x) =
(δP (x))a(ρ+δ)1−a

κaa(1−a)1−a (zero-

profit condition), we obtain the following log-linear relation, that we estimate at the “sub-place”

(census tract) level s using the property transaction data:

log(NFP
s ) = γ1 + γ2log(Ps) + γ3log(Qs) + γ4log(L

FP
s ) + ϵs

where γ1 = log
(
κ(1−a

a
)1−a

)
, γ2 = 1− a, γ3 = −1, and γ4 = 1.

As this theoretical relation only holds for developed formal private housing, we exclude sub-places

in the bottom quintile of property prices (not necessarily representative of competitive markers),

where more than 5% of households are reported to live in informal housing, or which we classify

as rural (large areas in the highest surface quantile, where less than 60% of the land can be

developed, or located more than 40km away from the CBD). We also exclude the poorest income

group who may benefit from public housing options. Table 2 shows the results.

The fact that the estimated values for γ̂3 and γ̂4 are reasonably close to -1 and 1, respectively,

suggests that the relation is indeed well identified. Solving for a and κ with the estimated values

for γ̂2 and γ̂1, respectively, yields a = 0.758 and κ = 0.031.
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Table 2: Estimated coefficients from log-linear regression on property transaction data

γ̂1 γ̂2 γ̂3 γ̂4
-3.763 0.242 -0.895 0.995
(0.981) (0.069) (0.094) (0.070)

5.3 Utility function parameters

Stone-Geary specification We use a simplified calibration procedure compared to Pfeiffer

et al. (2025), that we deem more robust. We set basic need in housing q0 = 4m2 to reflect the

very minimum size of informal units from Rice et al. (2023). Then, we set the income elasticity

of housing expenditure 1−α = 0.25 following Finlay & Williams (2022), who estimate this term

for more general non-homothetic preferences. As a matter of fact, these values happen to be

very close from the ones in Pfeiffer et al. (2025).

Amenity index As for the estimation of the amenity index A(x), we leverage property price

data for formal private housing and information on exogenous amenities from the City of Cape

Town, defined at the sub-place (census tract) level s. Let us define the observed amenity index

as:

As =
∏
n

(an,s)
ϑnϵA,s

where an,s are exogenous amenity dummies from the data, ϑn are their respective elasticities,

and ϵA,s is an error term.

Taking housing rents from the data and inverting equation (1) for formal private dwellers

(essentially the two richest income groups) also yield the amenity index As as a function of the

dominant income group’s utility level ui(s). We can therefore estimate the log-linearization of

the above equation for discrete values of ui(s). We pick the value set that minimizes the error

ϵA,s, and use the estimated ϑn to recover the predicted value of A(x) =
∏
n

(an,x)
ϑn , at the grid

cell level. Table 3 shows the corresponding regression results.

Informal disamenity index Finally, we recover the disamenity indices BIS(x) and BIB(x)

by model inversion. To do so, we start by solving the full model using the constant terms BIS

and BIB from Pfeiffer et al. (2025). Then, we update the values in each location x depending

on the prediction error on local populations N IS(x) and N IB(x). We stop after a fixed number

of iterations.

5.4 Externally calibrated parameters

Table 4 summarizes the values and sources for additional model parameters that are externally

calibrated.

The first panel deals with aggregate dwelling size parameters provided by the City of Cape

Town. qmin is a legal requirement, whereas the other values are estimates from the field. The
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Table 3: Results of the log regression of predicted amenity index on exogenous amenities

log(As)
Prox. to district park (¡1km) -0.051

(0.043)
Prox. to ocean (¡2km) 0.063

(0.041)
Prox. to ocean (¡4km) 0.011

(0.046)
Prox. to urban heritage site (¡2km) 0.185

(0.052)
Within airport noise cone -0.007

(0.067)
Slope (betwen 1 and 5%) 0.144

(0.034)
Slope (¿5%) 0.121

(0.049)
Prox. to biosphere reserve (¡2km) 0.098

(0.038)
Prox. to train station (¡2km) 0.039

(0.035)
Constant -0.458

(0.038)
Obs. 307
R² 0.160
F-stat 6.268
D.f. 297

Table 4: Summary table of externally calibrated parameters

Parameter Value Source
qmin 30 (m²) City of Cape Town
qFS 110 (m²) City of Cape Town
Y 70 (m²) City of Cape Town
qI 14 (m²) City of Cape Town
vFS 126,000 (ZAR) Expert assessment (PDG)
vI 3,000 (ZAR) Expert assessment (PDG)
γ 0.27 Quantec (HH budget breakdown)
PA 807.2 (ZAR) Property transaction data
ρ 0.025 Viguié et al. (2014)
δ 0.038 World Development Indicator database (2016)
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fact that they are fixed values reflects the relative standardization of RDP/BNG public housing

schemes on one side, and informal construction technologies on the other. Although these are

simplifications, we consider them as good first-order approximations.

The second panel deals with parameters relative to flood damages. The accounting value of

formal subsidized and informal (both settlements and backyards) buildings is based on expert

assessments of the material costs, along with surveys of construction technologies used in the

field. The share of composite good that is vulnerable to floods corresponds to the average budget

share households spend on durable and semi-durable goods, that are not consumed immediately

and are kept within the house.

The third panel deals with the remaining parameters. The agricultural price corresponds to the

highest decile in the property price data when selecting rural areas only (see definition below).

The capital depreciation rate is 2.5 times higher than the one used by Viguié et al. (2014) for

Paris (France), so as to account for the overall lower construction quality in Cape Town. Finally,

the interest rate corresponds to the 4-year average up to baseline year (2011) in the World

Development Indicator database, so as to smooth its volatility.

6 Simulations

In what follows, we run our benchmark model and conduct two comparative statics. In the

first one, we compare our benchmark to a version of the model where agents do not anticipate

flood risks. They therefore make their housing and location decisions ex ante, as in Pfeiffer

et al. (2025), only to realize flood damages ex post. Because this is not an equilibrium outcome,

utility levels cannot be directly compared between the two output sets. Instead, we consider

damage shares of income as a proxy of welfare losses due to floods.

The comparison between the two models yields the theoretical policy impact of going from a

polar case where agents have no information about flood risks to another polar case where they

have perfect information. Avner et al. (2019) and Liotta et al. (2023a) show that the latter

is equivalent to complete market- or self-insurance. The reality of the current situation and

of policy effectiveness probably lies in between, and our results should therefore be taken as

an upper bound on policy impacts. We intend to more precisely calibrate agents’ imperfect

foresight and behaviour updating following information shocks in future work (Bakkensen &

Ma, 2020; Kousky et al., 2020; Hino & Burke, 2021).

In the second comparative static, we compare our benchmark to a version of the model where

flood risks are updated to account for climate change. Since we do not currently allow for

protection investments, these results should also be taken as an upper bound for the effect of

climate change on spatial inequalities. We still see our simulations as a strong contribution to

the existing flood damage literature, given the key local housing conditions that are featured in

our approach.
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6.1 Information

Aggregate damages We plot the distribution of aggregate annual damages across housing

and damage types in Figure 4, comparing our two polar cases, for each flood type.

Figure 4: Aggregate flood damage estimates across flood types w/ and w/o/ anticipation

Several comments are in order. First, damages in formal housing are consistently larger than in

informal housing, although the latter is more vulnerable to flooding (due to building materials

used and locations of informal settlements), and damages to structures also tend to outweigh

damages to contents. This is because the replacement cost of informal settlements and backyard

structures is based on construction costs that are fairly low. Formal private housing, on the

other hand, is built according to higher and more costly standards, and will typically use land

more intensively in attractive locations such that buildings can be tall and capital-intensive. The

replacement cost of formal subsidized housing structures lies somewhere in between. Finally, the

population living in formal private housing essentially belongs to the two richest income groups.

Their higher amount of income available for consumption explains the relative importance of

content damages in this category.
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Second, damages are higher in the no-anticipation case than in the perfect-anticipation case.

This is to be expected. Anticipation also seems to play a relatively more important role in

avoiding damages in the formal private housing sector. This is because it is the least constrained

of the housing submarkets, either in terms of available locations, or restrictions on supply and

demand. Moreover, anticipation plays a contrasted role across flood types. Again, this can be

interpreted in terms of existing constraints: pluvial flood zones are typically more dispersed than

fluvial or coastal flood zones, hence are harder to avoid on the extensive margin of adaptation

(location). Independently, coastal flood zones are typically more attractive, hence a higher

willingness to stay there and adapt on the intensive margin (consumption).

Third, damages also significantly vary in magnitude across flood types. Table 5 summarizes

aggregate damage estimates per flood type in our two polar cases, with values converted between

2011 ZAR and 2021 USD using an inflation rate of 64% and an exchange rate of 14.78 ZAR/USD.

Total damages are smaller than the sum of individual categories as we avoid double counting

when pluvial and fluvial flood zones overlap.

Table 5: Summary table of aggregate damage estimates w/ and w/o/ anticipation

Perfect information No anticipation
Fluvial 280M (ZAR, 2011) 470M (ZAR, 2011)

31M (USD, 2021) 63M (USD, 2021)
Pluvial 145M (ZAR, 2011) 165M (ZAR, 2011)

16M (USD, 2021) 18M (USD, 2021)
Coastal 50M (ZAR, 2011) 75M (ZAR, 2011)

6M (USD, 2021) 8M (USD, 2021)
Total 448M (ZAR, 2011) 750M (ZAR, 2011)

49M (USD, 2021) 83M (USD, 2021)

For comparison, Gonzales et al. (2023) estimate aggregate annual flood damages in Cape Town

at around 16M USD (at 2021 values). The key difference between our results lies in the way the

replacement cost of vulnerable assets is determined. In their paper, a standard capital value

is calibrated and yields flood damages based on depth-damage conversions. In our paper, the

capital value of buildings is an endogenous outcome that can quickly rise in attractive areas, and

we also take housing contents into consideration. In fact, our total estimate for the capital value

of the city is in line with that of the authors. The reason why we find higher damages therefore

boils down to a composition effect, as we are able to simulate how capital gets distributed across

space, notably in flood-prone zones.

At any rate, our paper shows that material flood damages are high (potentially higher than

previously thought), and that information/insurance is a key policy lever to mitigate them, with

a reduction potential of up to 41%.

Absolute damage distribution Figure 5 shows how flood damages spread out across the

city in the no-anticipation case, and the absolute change this corresponds to compared to the

benchmark perfect-information case. The highest damage values concentrate in populated areas
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along rivers near the city center and to the north, where some important job centers are located

and rent is still relatively high. These are also areas where values change the most compared to

the benchmark case, suggesting an important adaptation of households on the extensive margin

following an information shock.

Figure 5: Spatial absolute flood damage estimates w/ and w/o/ anticipation (ZAR, 2011)

Note: The map on the left shows the values under no flood risk anticipation. The map on the right shows the change (in absolute
terms) it represents compared to baseline (perfect anticipation).

In relative damage terms (as a share of expected income net of commuting costs, henceforth

net income), values would appear to be higher in the north than in the city center, and even

more to the east, where poorer households live. As households of different types move across

locations in the two polar cases, it is not possible to properly estimate the changes in relative

damages at the grid-cell level. Instead, we now turn to their aggregate distribution per income

group to see how flood damages translate into welfare losses.

Relative damage distribution Figure 6 plots the aggregate distribution of relative flood

damages per income group. Since there is a high mass of households who do not live in flood-

prone areas, the graphs only consider the subpopulation living in areas with a positive risk of

floods. In the interest of space, we only show results for fluvial flood risks (since they are the

most impactful in households’ adaptive behaviour).

We see that richer households are less likely to live in flood-prone zones, even in the no-

anticipation case: this is because they typically are low-amenity areas located far from job

centers. Interestingly, conditional on flood exposure, the tail of relative damage distributions

does not necessarily become thinner as income increases in the perfect-information case. This is

because, as marginal utility decreases with income, richer households become comparatively less

sensitive to flood damages.

As a side note, the very high relative damage values for the poorest income group do not only
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Figure 6: Relative fluvial flood damage distribution by income group w/ and w/o/ anticipation

relate to their low income levels, but also to the fact that replacement costs of formal subsidized

housing are very high (compared with informal housing): in cases where this option becomes

unsustainable (or simply less valuable than informal options), the local government would have

to bail public housing beneficiaries out.

To visualize more clearly the adaptation response, Table 6 summarizes average relative damage

estimates per income group. Here is the bottom line. In our simulations, the total income gain

generated by the information shock is equal to more than 4% for 20% of the total population

(that is initially exposed to flood risks). This is the result of an adaptive behaviour on both the

extensive (households moving to areas with lower flood risks, potentially leaving flood-prone

zones entirely) and the intensive (households trading off goods and housing consumption)

margins.

When analyzing the heterogeneity by income group, we show that the poorest income group

(that is crowded out of the formal private sector) makes up roughly half of the total exposed

population. Households are also more likely to live in flood-prone areas conditional on their

belonging to this group, and have the largest share of income destroyed by floods. They therefore

strand to gain the most from the policy, with total income gains rising to 7% for this group. As

we saw, this is in spite of their option set being more constrained, which leaves room for even
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Table 6: Summary table of relative damage estimates w/ and w/o/ anticipation

Perfect information No anticipation
Inc. group 1

Inc. destroyed 3.37% 9.83%
Exposed pop. 87,582 104,723
Group share 22% 26%

Tot. inc. gain +7.01%
Inc. group 2

Inc. destroyed 0.60% 2.57%
Exposed pop. 30,363 32,789
Group share 18% 19%

Tot. inc. gain +2.01%
Inc. group 3

Inc. destroyed 1.79% 3.08%
Exposed pop. 36,593 38,620
Group share 12% 13%

Tot. inc. gain +1.38%
Inc. group 4

Inc. destroyed 0.76% 1.59%
Exposed pop. 21,192 22,624
Group share 13% 14%

Tot. inc. gain +0.88%
All

Inc. destroyed 2.25% 6.39%
Exposed pop. 175,730 198,656
Group share 17% 19%

Tot. inc. gain +4.40%
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further gains under more accommodating housing policies.

Flood damages and policy responses therefore appear to be high, not only in absolute but also in

relative terms, even though the household and housing types that are the most affected are not

the same in the two cases. We now give more details on the form adaptation takes in practice.

Population moves: the extensive margin Figure 7 shows the spatial population distribu-

tion in the non-anticipation case, and the change it corresponds to (in absolute terms) compared

to the benchmark perfect-information case. As already mentioned, the population density is the

highest in informal settlement areas in the east (which exist alongside formal private housing

units). Note that public housing (hence informal backyard) units tend to be located in the same

zones. Interestingly, these are also the areas where there appears to be the most moves between

the two polar cases: poor households appear to be relatively mobile, even though they do not

seem to move far from their original location.

Figure 7: Spatial population distribution w/ and w/o/ anticipation

Note: The map on the left shows the values under no flood risk anticipation. The map on the right shows the change (in absolute
terms) it represents compared to baseline (perfect anticipation).

Changes in rents: the intensive margin Figure 8 shows the spatial changes in rents (in

absolute terms) across the three endogenous housing submarkets in the model. As could be

expected, rents generally increase with population as they both capture the willingness to pay of

households across the two polar cases. Interestingly, they also move in places where there are no

strong population changes, and even more so where we expect relatively poor households to live.

This suggests that adaptation also occurs on the intensive margin, with households demanding

lower rents to be compensated for the cost of living in flood-prone zones (or willing to pay more

not to be crowded out of safe places). This effect is stronger for vulnerable populations who are

more sensitive to changes in income.
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Figure 8: Absolute change in spatial rent (rands/m²) per housing type under no anticipation

All in all, poor households seem to be reactive to the information/insurance shock, with a

response on the extensive margin that allows them to reduce their exposure to flood risks, and

a response on the intensive margin that allows them to be partly compensated through changes

in rents when they are not able or willing to move away. Let us now see what kind of behaviour

they adopt when it comes to climate change.

6.2 Climate change

Aggregate damages As before, we start by plotting aggregate damages per flood type across

our scenarios, this time with and without climate change, in Figure 9. Let us observe that

the largest change now occurs for pluvial flood risks, and not fluvial ones. The explanation

is the same as before: since pluvial flood zones are more spread out, climate change there is

harder to avoid. Again, coastal flood zones fall in between as they typically are high-value areas

where households prefer to adapt their housing consumption rather than their location choice.
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Otherwise, the pattern is similar to the previous comparative static, with substantial increases

in flood damages when introducing climate change.

Figure 9: Aggregate flood damage estimates across flood types w/ and w/o/ climate change

We do not reproduce the aggregate damage estimate table whose primary function was to

compare our results with those of Gonzales et al. (2023), who do not consider climate change in

their model.

Absolute damage distribution Figure 10 reproduces the spatial distribution of absolute

damages in our benchmark case, and shows how they increase when taking climate change into

account. We observe that the change across scenarios is more widely spread (but also smaller

per unit of land) than in the previous comparative static (as pluvial flood risks are more spread

out, but also less severe than fluvial ones).

Relative damage distribution Contrary to the previous comparative static, both scenarios

are now equilibrium outcomes (ex post flood damages). We can therefore directly compare the

utility levels of each income group (assuming cardinal utilities) to assess the welfare impacts
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Figure 10: Spatial absolute flood damage estimates w/ and w/o/ climate change (ZAR, 2011)

Note: The map on the left shows the values at baseline (perfect anticipation). The map on the right shows the change (in absolute
terms) when considering climate change.

of climate change in the model. We find very marginal (negative) effects: the poorest income

group is almost not affected, the second poorest is 0.07% worse off, and the two richest are

0.05% worse off. We argue that this is mostly due to an effective adaptation of households with

respect to fluvial flood risks, and lower pluvial flood risks in comparison.

Note that such outcomes correspond to a long-term static equilibrium where the housing market

has completely absorbed the effect of climate change, and where exposed and non-exposed

households have become indifferent conditional on their income group. This says nothing of the

adjustment mechanisms in a dynamic setting. We therefore now turn, as before, to the relative

damage distribution per income group to focus on direct losses households are faced with before

rents adjust (but after potential population moves). Results are shown in Figure 11 for pluvial

flood risks, since they are now the most impactful flood type across the two scenarios.

Compared to fluvial flood risks, there are more exposed households, and the distribution tails are

typically thinner and shorter. As expected, we see exposure shifting from low-damage brackets

to high-damage brackets when introducing climate change. Table 7 summarizes the results. As

before, the poorest income group is the most affected, and this time stands to lose the most

from the change. Overall, we estimate the relative damages from climate change to roughly

0.3% of net income for 90% of the total population. Assuming the same exposed population

baseline as in the first comparative static, this would correspond to a loss of 1.7%, which is less

important in absolute terms but not negligible.

Households therefore appear to be less able or willing to adapt to the consequences of climate

change regarding pluvial, as opposed to fluvial, flood risks. Let us now turn to population moves
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Table 7: Summary table of relative damage estimates under climate change

Business as usual Climate change
Inc. group 1

Inc. destroyed 0.67% 1.34%
Exposed pop. 366,265 364,492
Group share 92% 92%

Tot. inc. loss -0.67%
Inc. group 2

Inc. destroyed 0.12% 0.23%
Exposed pop. 166,655 166,511
Group share 97% 97%

Tot. inc. loss -0.12%
Inc. group 3

Inc. destroyed 0.10% 0.20%
Exposed pop. 270,802 270,786
Group share 91% 91%

Tot. inc. loss -0.10%
Inc. group 4

Inc. destroyed 0.07% 0.13%
Exposed pop. 128,747 128,642
Group share 79% 79%

Tot. inc. loss -0.07%
All

Inc. destroyed 0.32% 0.64%
Exposed pop. 932,469 930,431
Group share 0.91% 0.90%

Tot. inc. loss -0.32%
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Figure 11: Relative pluvial flood damage distribution by income group under climate change

to assess their spatial adaptation strategies.

Population moves: the extensive margin Figure 12 shows the spatial population distribu-

tion at baseline, and how it evolves following the climate change shock. The pattern is similar

to that of the first comparative statistic as households are again avoiding risks in fluvial flood

zones, which explains why the increase in damages is limited in this category.

Changes in rents: the intensive margin Figure 13 plots the spatial evolution of rents

across the three endogenous housing submarkets in our model. Again, there seems to be

adjustments even when households do not change locations, reflecting their lower willingness to

pay for exposed housing: contrary to the previous comparative static, rents mostly fall across the

city, with very few rent increases in equilibrium. It is also worth noting that most of the changes

are concentrated in informal housing, which is further exposed to pluvial floods compared to

formal housing, due to the simulated absence of drainage systems. Such adjustments explain

why the fall in utility levels is weaker than the fall in flood damages, especially for the poorest

income group.

All in all, households seem to be responsive to the increase in flood risks due to climate change,
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Figure 12: Spatial population distribution w/ and w/o/ climate change

Note: The map on the left shows the values at baseline (perfect anticipation). The map on the right shows the change (in absolute
terms) when considering climate change.

but such adaptation at the individual level hides substantial economic damages at the aggregate

level.

7 Conclusion

In this paper, we presented a realistic urban simulation model for low- and middle-income

countries, featuring income heterogeneity and informal housing. The key novelty is that it

also features material damages from three types of flood risks (coastal, pluvial, and fluvial).

We estimated it in the context of the city of Cape Town (South Africa), one of the most

exposed cities to pluvial and fluvial flooding in Sub-Saharan Africa. Then, we simulated the

adaptation strategies of poor households following an information shock, first at current flood

risk conditions, then at revised conditions under climate change. Here is what our results

suggest. Information/insurance is effective in helping poor households mitigate the adverse

consequences of flood risks, in the face of climate change notably, even if they would further

benefit from an improved market access to formal housing. However, their adaptation strategies

may aggravate spatial inequalities and reflect an overall deterioration of housing conditions. In

the process, we show that distinguishing between flood types is instrumental in understanding

households’ response in equilibrium.

Considering the production side of the economy, it may therefore be welfare-improving to invest

in flood protection. In fact, the type of protection needed differs across flood types. Localized

flood risks such as coastal or fluvial risks may be addressed by public investments (e.g., dikes,

dams) or urban planning, so as to maintain the attractiveness of certain neighbourhoods. Our

model would allow to test the impact and feasibility of such schemes through land value capture.
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Figure 13: Absolute change in spatial rent (rands/m²) per housing type under climate change

More widespread pluvial flood risks require more global investments in drainage systems and

construction technology. In fact, poor households are already responding with private initiatives,

especially in informal settlements (e.g., sandbags, barriers, pumps). Local governments could

encourage the most effective actions, and our model could help with their identification. These

are the main extensions we are considering for future work.
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